
Flask-Migrate Documentation

Miguel Grinberg

Sep 12, 2023

Contents

1 Why Use Flask-Migrate vs. Alembic Directly? 3

2 Installation 5

3 Example 7

4 Alembic Configuration Options 9

5 Configuration Callbacks 11

6 Multiple Database Support 13

7 Command Reference 15

8 API Reference 17

i

ii

Flask-Migrate Documentation

Flask-Migrate is an extension that handles SQLAlchemy database migrations for Flask applications using Alembic.
The database operations are made available through the Flask command-line interface.

Contents 1

Flask-Migrate Documentation

2 Contents

CHAPTER 1

Why Use Flask-Migrate vs. Alembic Directly?

Flask-Migrate is an extension that configures Alembic in the proper way to work with your Flask and Flask-
SQLAlchemy application. In terms of the actual database migrations, everything is handled by Alembic so you get
exactly the same functionality.

3

Flask-Migrate Documentation

4 Chapter 1. Why Use Flask-Migrate vs. Alembic Directly?

CHAPTER 2

Installation

Install Flask-Migrate with pip:

pip install Flask-Migrate

5

Flask-Migrate Documentation

6 Chapter 2. Installation

CHAPTER 3

Example

This is an example application that handles database migrations through Flask-Migrate:

from flask import Flask
from flask_sqlalchemy import SQLAlchemy
from flask_migrate import Migrate

app = Flask(__name__)
app.config['SQLALCHEMY_DATABASE_URI'] = 'sqlite:///app.db'

db = SQLAlchemy(app)
migrate = Migrate(app, db)

class User(db.Model):
id = db.Column(db.Integer, primary_key=True)
name = db.Column(db.String(128))

With the above application you can create a migration repository with the following command:

$ flask db init

This will add a migrations folder to your application. The contents of this folder need to be added to version control
along with your other source files.

You can then generate an initial migration:

$ flask db migrate -m "Initial migration."

The migration script needs to be reviewed and edited, as Alembic is not always able to detect every change you
make to your models. In particular, Alembic is currently unable to detect table name changes, column name changes,
or anonymously named constraints. A detailed summary of limitations can be found in the Alembic autogenerate
documentation. Once finalized, the migration script also needs to be added to version control.

Then you can apply the changes described by the migration script to your database:

7

https://alembic.sqlalchemy.org/en/latest/autogenerate.html#what-does-autogenerate-detect-and-what-does-it-not-detect
https://alembic.sqlalchemy.org/en/latest/autogenerate.html#what-does-autogenerate-detect-and-what-does-it-not-detect

Flask-Migrate Documentation

$ flask db upgrade

Each time the database models change, repeat the migrate and upgrade commands.

To sync the database in another system just refresh the migrations folder from source control and run the upgrade
command.

To see all the commands that are available run this command:

$ flask db --help

Note that the application script must be set in the FLASK_APP environment variable for all the above commands to
work, as required by the flask command.

If the db command group name is inconvenient, it can be changed to a different with the command argument passed
to the Migrate class:

migrate = Migrate(app, db, command='migrate')

8 Chapter 3. Example

CHAPTER 4

Alembic Configuration Options

Starting with version 4.0, Flask-Migrate automatically enables the following options that are disabled by default in
Alembic:

• compare_type=True: This option configures the automatic migration generation subsystem to detect col-
umn type changes.

• render_as_batch=True: This option generates migration scripts using batch mode, an operational mode
that works around limitations of many ALTER commands in the SQLite database by implementing a “move and
copy” workflow. Enabling this mode should make no difference when working with other databases.

To manually configure these or other Alembic options, pass them as keyword arguments to the Migrate constructor.
Example:

migrate = Migrate(app, db, render_as_batch=False)

9

https://alembic.sqlalchemy.org/en/latest/batch.html
https://alembic.sqlalchemy.org/en/latest/api/runtime.html#alembic.runtime.environment.EnvironmentContext.configure

Flask-Migrate Documentation

10 Chapter 4. Alembic Configuration Options

CHAPTER 5

Configuration Callbacks

Sometimes applications need to dynamically insert their own settings into the Alembic configuration. A function
decorated with the configure callback will be invoked after the configuration is read, and before it is applied. The
function can modify the configuration object, or replace it with a different one.

@migrate.configure
def configure_alembic(config):

modify config object
return config

Multiple configuration callbacks can be defined simply by decorating multiple functions. The order in which multiple
callbacks are invoked is undetermined.

11

Flask-Migrate Documentation

12 Chapter 5. Configuration Callbacks

CHAPTER 6

Multiple Database Support

Flask-Migrate can integrate with the binds feature of Flask-SQLAlchemy, making it possible to track migrations to
multiple databases associated with an application.

To create a multiple database migration repository, add the --multidb argument to the init command:

$ flask db init --multidb

With this command, the migration repository will be set up to track migrations on your main database, and on any
additional databases defined in the SQLALCHEMY_BINDS configuration option.

13

http://flask-sqlalchemy.pocoo.org/binds/

Flask-Migrate Documentation

14 Chapter 6. Multiple Database Support

CHAPTER 7

Command Reference

Flask-Migrate exposes one class called Migrate. This class contains all the functionality of the extension.

The following example initializes the extension with the standard Flask command-line interface:

from flask_migrate import Migrate
migrate = Migrate(app, db)

The two arguments to Migrate are the application instance and the Flask-SQLAlchemy database in-
stance. The Migrate constructor also takes additional keyword arguments, which are passed to Alembic’s
EnvironmentContext.configure() method. As is standard for all Flask extensions, Flask-Migrate can be
initialized using the init_app method as well:

from flask_sqlalchemy import SQLAlchemy
from flask_migrate import Migrate

db = SQLAlchemy()
migrate = Migrate()

def create_app():
"""Application-factory pattern"""
...
...
db.init_app(app)
migrate.init_app(app, db)
...
...
return app

After the extension is initialized, a db group will be added to the command-line options with several sub-commands.
Below is a list of the available sub-commands:

• flask db --help Shows a list of available commands.

• flask db list-templates Shows a list of available database repository templates.

15

Flask-Migrate Documentation

• flask db init [--multidb] [--template TEMPLATE] [--package] Initializes migration
support for the application. The optional --multidb enables migrations for multiple databases con-
figured as Flask-SQLAlchemy binds. The --template option allows you to explicitly select a database
repository template, either from the stock templates provided by this package, or a custom one, given as a
path to the template directory. The --package option tells Alembic to add __init__.py files in the
migrations and versions directories.

• flask db revision [--message MESSAGE] [--autogenerate] [--sql] [--head HEAD] [--splice] [--branch-label BRANCH_LABEL] [--version-path VERSION_PATH] [--rev-id REV_ID]
Creates an empty revision script. The script needs to be edited manually with the upgrade and downgrade
changes. See Alembic’s documentation for instructions on how to write migration scripts. An optional
migration message can be included.

• flask db migrate [--message MESSAGE] [--sql] [--head HEAD] [--splice] [--branch-label BRANCH_LABEL] [--version-path VERSION_PATH] [--rev-id REV_ID]
Equivalent to revision --autogenerate. The migration script is populated with changes detected
automatically. The generated script should to be reviewed and edited as not all types of changes can
be detected automatically. This command does not make any changes to the database, just creates the
revision script.

• flask db check Checks that a migrate command would not generate any changes. If pending changes
are detected, the command exits with a non-zero status code.

• flask db edit <revision> Edit a revision script using $EDITOR.

• flask db upgrade [--sql] [--tag TAG] [--x-arg ARG] <revision> Upgrades the
database. If revision isn’t given then "head" is assumed.

• flask db downgrade [--sql] [--tag TAG] [--x-arg ARG] <revision> Downgrades
the database. If revision isn’t given then -1 is assumed.

• flask db stamp [--sql] [--tag TAG] <revision> Sets the revision in the database to the one
given as an argument, without performing any migrations.

• flask db current [--verbose] Shows the current revision of the database.

• flask db history [--rev-range REV_RANGE] [--verbose] Shows the list of migrations. If
a range isn’t given then the entire history is shown.

• flask db show <revision> Show the revision denoted by the given symbol.

• flask db merge [--message MESSAGE] [--branch-label BRANCH_LABEL] [--rev-id REV_ID] <revisions>
Merge two revisions together. Creates a new revision file.

• flask db heads [--verbose] [--resolve-dependencies] Show current available heads in
the revision script directory.

• flask db branches [--verbose] Show current branch points.

Notes:

• All commands also take a --directory DIRECTORY option that points to the directory containing the
migration scripts. If this argument is omitted the directory used is migrations.

• The default directory can also be specified as a directory argument to the Migrate constructor.

• The --sql option present in several commands performs an ‘offline’ mode migration. Instead of executing the
database commands the SQL statements that need to be executed are printed to the console.

• Detailed documentation on these commands can be found in the Alembic’s command reference page.

16 Chapter 7. Command Reference

http://flask-sqlalchemy.pocoo.org/binds/
http://alembic.zzzcomputing.com/en/latest/index.html
http://alembic.zzzcomputing.com/en/latest/api/commands.html

CHAPTER 8

API Reference

The commands exposed by Flask-Migrate’s command-line interface can also be accessed programmatically by im-
porting the functions from module flask_migrate. The available functions are:

• init(directory='migrations', multidb=False) Initializes migration support for the applica-
tion.

• revision(directory='migrations', message=None, autogenerate=False, sql=False, head='head', splice=False, branch_label=None, version_path=None, rev_id=None)
Creates an empty revision script.

• migrate(directory='migrations', message=None, sql=False, head='head', splice=False, branch_label=None, version_path=None, rev_id=None)
Creates an automatic revision script.

• edit(directory='migrations', revision='head') Edit revision script(s) using $EDITOR.

• merge(directory='migrations', revisions='', message=None, branch_label=None, rev_id=None)
Merge two revisions together. Creates a new migration file.

• upgrade(directory='migrations', revision='head', sql=False, tag=None)
Upgrades the database.

• downgrade(directory='migrations', revision='-1', sql=False, tag=None)
Downgrades the database.

• show(directory='migrations', revision='head') Show the revision denoted by the given
symbol.

• history(directory='migrations', rev_range=None, verbose=False) Shows the list of
migrations. If a range isn’t given then the entire history is shown.

• heads(directory='migrations', verbose=False, resolve_dependencies=False)
Show current available heads in the script directory.

• branches(directory='migrations', verbose=False) Show current branch points

• current(directory='migrations', verbose=False, head_only=False) Shows the cur-
rent revision of the database.

• stamp(directory='migrations', revision='head', sql=False, tag=None) Sets the
revision in the database to the one given as an argument, without performing any migrations.

17

Flask-Migrate Documentation

Notes:

• These commands will invoke the same functionality that runs from the command-line, including output to the
terminal. The logging configuration of the process will be overriden by Alembic according to the contents of
the alembic.ini file.

• For greater scripting flexibility you can also use the API exposed by Alembic directly.

18 Chapter 8. API Reference

	Why Use Flask-Migrate vs. Alembic Directly?
	Installation
	Example
	Alembic Configuration Options
	Configuration Callbacks
	Multiple Database Support
	Command Reference
	API Reference

